Time Complexity Analysis of Algorithms
This document explains the time complexities of common algorithms along with example code snippets for each.
1. Insertion Sort
- Best Case: ( O(n) ) (Array is already sorted)
- Average Case: ( O(n^2) )
- Worst Case: ( O(n^2) ) (Array is sorted in reverse order)
Code Example:
void insertionSort(int array[], int n) {
for (int i = 1; i < n; i++) {
int key = array[i];
int j = i - 1;
while (j >= 0 && array[j] > key) {
array[j + 1] = array[j];
j--;
}
array[j + 1] = key;
}
}
2. Bubble Sort
- Best Case: ( O(n) ) (Array is already sorted)
- Average Case: ( O(n^2) )
- Worst Case: ( O(n^2) ) (Array is sorted in reverse order)
Code Example:
void bubbleSort(int array[], int n) {
for (int i = 0; i < n - 1; i++) {
for (int j = 0; j < n - i - 1; j++) {
if (array[j] > array[j + 1]) {
int temp = array[j];
array[j] = array[j + 1];
array[j + 1] = temp;
}
}
}
}
3. Merge Sort
- Best Case: ( O(n \log n) )
- Average Case: ( O(n \log n) )
- Worst Case: ( O(n \log n) )
Code Example:
void merge(int array[], int left, int mid, int right) {
int n1 = mid - left + 1;
int n2 = right - mid;
int L[n1], R[n2];
for (int i = 0; i < n1; i++)
L[i] = array[left + i];
for (int i = 0; i < n2; i++)
R[i] = array[mid + 1 + i];
int i = 0, j = 0, k = left;
while (i < n1 && j < n2) {
if (L[i] <= R[j]) array[k++] = L[i++];
else array[k++] = R[j++];
}
while (i < n1) array[k++] = L[i++];
while (j < n2) array[k++] = R[j++];
}
void mergeSort(int array[], int left, int right) {
if (left < right) {
int mid = left + (right - left) / 2;
mergeSort(array, left, mid);
mergeSort(array, mid + 1, right);
merge(array, left, mid, right);
}
}
4. Binary Search
- Best Case: ( O(1) ) (Target found at the middle)
- Average Case: ( O(\log n) )
- Worst Case: ( O(\log n) )
Code Example:
int binarySearch(int array[], int n, int target) {
int left = 0, right = n - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (array[mid] == target) return mid;
else if (array[mid] < target) left = mid + 1;
else right = mid - 1;
}
return -1;
}
5. Linear Search
- Best Case: ( O(1) ) (Target is the first element)
- Average Case: ( O(n) )
- Worst Case: ( O(n) ) (Target is not in the array or at the end)
Code Example:
int linearSearch(int array[], int n, int target) {
for (int i = 0; i < n; i++) {
if (array[i] == target) return i;
}
return -1;
}
Summary of Time Complexities
Algorithm | Best Case | Average Case | Worst Case |
---|---|---|---|
Insertion Sort | ( O(n) ) | ( O(n^2) ) | ( O(n^2) ) |
Bubble Sort | ( O(n) ) | ( O(n^2) ) | ( O(n^2) ) |
Merge Sort | ( O(n \log n) ) | ( O(n \log n) ) | ( O(n \log n) ) |
Binary Search | ( O(1) ) | ( O(\log n) ) | ( O(\log n) ) |
Linear Search | ( O(1) ) | ( O(n) ) | ( O(n) ) |